病毒性脑炎发病机制的研究进展(5)

来源:人类学学报 【在线投稿】 栏目:期刊导读 时间:2021-03-17
作者:网站采编
关键词:
摘要:[42] SOLOMON T.Control of Japanese encephalitis--within our grasp?[J].N Engl J Med,2006,355(9):869-871. [43] CAMPBELL G L,HILLS S L,FISCHER M,et al.Estimated global incidence of Ja

[42] SOLOMON T.Control of Japanese encephalitis--within our grasp?[J].N Engl J Med,2006,355(9):869-871.

[43] CAMPBELL G L,HILLS S L,FISCHER M,et al.Estimated global incidence of Japanese encephalitis:a systematic review[J].Bull World Health Organ,2011,89(10):766-774,774a-774e.

[44] LI F,WANG Y,YU L,et al.Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection[J].J Virol,2015,89(10):5 602-5 614.

[45] YANG S,PEI Y,LI X,et al.miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2[J].Virol J,2016,13:105.

[46] CHEN C J,OU Y C,LI J R,et al.Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier[J].J Virol,2014,88(2):1 150-1 161.

[47] MISRA U K,KALITA J.Overview:Japanese encephalitis[J].Prog Neurobiol,2010,91(2):108-120.

[48] GERMAN A C,MYINT K S,MAI N T,et al.A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model[J].Trans R Soc Trop Med Hyg,2006,100(12):1 135-1 145.

[49] YUN S I,LEE Y M.Early Events in Japanese Encephalitis Virus Infection:Viral Entry[J].Pathogens,2018,7(3).pii:E68.DOI:10.3390/pathogens.

[50] LI Y,COUNOR D,LU P,et al.Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model[J].Virol J,2012,9:135.

Referenceinformation:WANG Yuwei,GUO Aisong,CAI Junyan,LIU Su,WANG Siye.Advances in research on the pathogenesis of viral encephalitis[J].Chinese Journal of Practical Nervous Diseases,2019,22(17):1966-1972.DOI:10./SYSJ.2019.17.329

病毒性脑炎(virus encephalitis,VE)是由传染性疾病和非传染性疾病引起的脑实质炎症。病毒是与急性脑炎相关的最常见的感染因子。虽然全身性病毒感染非常普遍,但脑实质的有症状性病毒感染非常罕见,是一种严重的神经系统疾病[1]。目前可引起中枢神经系统感染的病毒约130种[2]。在我国,病毒感染的主要原因是日本脑炎病毒(Japanese encephalitis virus,JEV)、肠道病毒(entervirus,EV)、单纯疱疹病毒(herpes simplex virus,HSV)等[3]。我国儿童中最常见的病毒性脑炎病原体是肠道病毒,肠道病毒感染在夏季和秋季普遍存在[4]。1 甲型流感病毒性脑炎甲型流感病毒(Influenza A virus,IAV)是一种高度传染性的呼吸道病原体,IAV可引起人畜共患感染,是宿主转换和流感大流行产生的重大风险,是全球公共卫生的重大威胁[5]。A/H3N2在夏季和冬季都占主导地位,而A/H1N1几乎只在冬季或春季传播[6]。2013—2017年,华东地区首次发现的一种低致病性禽流感病毒(H7N9)在人群中爆发,病死率高达40%[7]。LEE等[8]研究发现,有3例与成人甲型流感感染相关的急性脑病,未在脑脊液(cerebrospinal fluid,CSF)中检测到病毒RNA,但发现了CSF中细胞因子水平的增加,这表明脑病的发病机制是细胞因子介导的。高度传染性的H5N1流感病毒可通过脑神经从周围神经系统进展到中枢神经系统(central nervous system,CNS),从而激活大脑中的先天免疫反应[9]。H5N1病毒感染后,会在大脑中诱导长期的炎症反应,活化小胶质细胞,增加炎性细胞因子和趋化因子的数量[10]。2009年大流行的H1N1流感病毒也能够在大脑中诱导炎症反应,激活黑质致密部和海马齿状回中的小胶质细胞,导致CNS中神经营养因子表达下调、趋化因子表达增加[11]。WANG等[12]研究首次证明,人类H1N1和禽流感H5N1流感病毒均能感染小胶质细胞和星形胶质细胞,并在体外诱导细胞凋亡、细胞病变、产生炎症细胞因子如白细胞介素-1β(interleukin-1β,IL-1β),IL-6 和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α),结果表明流感病毒的发病机制与CNS中直接细胞损伤以及免疫病理损伤有关。研究发现,小鼠经鼻接种H5N1病毒后在CNS产生感染,病毒感染的细胞最初出现在呼吸道中,此后病毒抗原阳性细胞出现在嗅觉系统和支配面部区域的脑神经核中。这表明该病毒主要通过脑神经从鼻腔传递到CNS。同时室管膜细胞感染可通过脑脊液引起病毒传播,说明病毒的跨神经传递可能在CNS内起重要作用[13]。嗅神经主要由嗅觉受体神经元组成,并直接连接鼻腔与CNS[14]。季节性H3N2病毒、大流行性H1N1病毒和高致病性禽流感H5N1病毒能够附着在人和雪貂嗅黏膜的顶端,这表明多种亚型流感病毒能够感染人类的嗅觉受体神经元。临床发现1例感染了H3N2病毒的免疫功能低下的儿童,在其嗅球和嗅道中检测到病毒抗原,而在CNS的其他部分和血浆样品中均未检测到病毒抗原,说明病毒也许是在鼻腔内复制沿着嗅神经进入并直接传播到CNS[15]。研究发现,H5N1病毒通过嗅觉途径进入嗅球,随后进入CNS,导致严重的脑膜脑炎[16]。H5N1病毒经鼻感染后,在脑干中检测到病变和病毒抗原的主要区域是脑桥耳蜗背侧核,表明病毒从鼻腔通过咽鼓管扩散到内耳,然后通过前庭耳蜗神经入侵CNS[17]。血凝素(hemagglutinin,HA)是目前研究较多的病毒蛋白之一,在病毒进入中起关键作用。HA是同源三聚体,每个单体通过单个二硫键连接,由两个亚基HA1和HA2组成[18]。唾液酸和HA之间初始低亲和力使得病毒与细胞表面紧密相互作用以引发病毒感染[19]。病毒表面的膜融合糖蛋白血凝素前体(hemagglutinin precursor,HA0)需要被特定的蛋白酶水解为HA1和HA2后,才能与宿主细胞融合而侵入细胞,促进宿主内感染病毒的进入和增殖[20]。胰蛋白酶能水解HA0,感染H3N2流感病毒后宿主全身多种器官均有表达异位胰蛋白酶,包括脑实质海马锥体和齿状回神经元以及分散的脑内皮细胞中异位胰蛋白酶的表达显著上调[21]。此外,MEDZHITOV等[22]研究发现,Toll样受体(Toll-like receptors,TLRs)是Ⅰ型跨膜蛋白,TLRs识别病原体相关分子模式并介导核因子(nuclear factor-κB,NF-κB)的激活和促炎细胞因子的产生,这对先天免疫系统至关重要。TLR3识别双链RNA和甲型流感病毒。在研究中发现了1例患者TLR3基因出现了突变,可能是导致流感相关脑病的因素之一[23]。研究发现,神经毒性甲型流感病毒感染引起致死性急性脑炎的过程中,激活了c-Jun N-末端激酶/应激激活蛋白激酶(c-Jun N-terminal kinase/stress-activated protein kinase,JNK/SAPK)和p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)两种信号通路。JNK/SAPK信号转导在病毒感染的神经元中被激活,而p38 MAPK在星形胶质细胞中延迟和广泛激活,并在小鼠大脑中募集炎症反应[24]。甲型流感病毒感染后,非结构蛋白1(non-structural protein 1,NS1)抑制细胞凋亡诱导。NS1结合并激活磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K),这导致PI3K下游效应子Akt的激活,Akt也被称为蛋白激酶B(protein kinase B,PKB),从而激活PI3K/Akt途径[25]。2 单纯疱疹病毒性脑炎单纯疱疹病毒(herpes simplex virus,HSV)是散发性脑炎的常见原因,病毒在人与人之间传播。这种病毒由两种血清型组成。单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1)在儿童和成人中可导致口腔、角膜疱疹和脑炎。单纯疱疹病毒2型(herpes simplex virus type 2,HSV-2)会导致生殖器疱疹和新生儿脑炎[26]。凋亡与抗凋亡机制在单纯疱疹病毒性脑炎中发挥重要作用:最近的研究表明,在进入感觉神经元之前,病毒通过感染外周组织中的上皮细胞或黏膜细胞进入体内。病毒基因组作为表达单个转录物,LAT和几种微小RNA的附加体到达感觉神经元的胞体。HSV-1具有抗凋亡作用的LAT区域被大量转录,其参与保护细胞免于体外凋亡,在体内保护神经元细胞并维持病毒基因组[27-28]。自噬与抗自噬机制:真核起始因子2α(eIF2α)蛋白激酶家族包括PKR,eIF2α激酶信号通路对于病毒诱导的自噬是必需的。自噬是一种抵抗病毒感染的重要细胞防御机制,HSV-1感染通过激活PKR/eIF2α信号通路刺激自噬,并且自噬被HSV-1神经毒力基因产物拮抗[29]与蛋白磷酸酶PP1α相互作用,介导eIF2α的去磷酸化,从而拮抗PKR信号通路,而缺乏ICP34.5编码基因的突变病毒以PKR/eIF2α依赖性方式刺激自噬[30]。抗病毒信号分子PKR在宿主对HSV-1的防御中位于Beclin 1基因上游。HSV-1编码的神经毒性蛋白ICP34.5与自噬机制蛋白Beclin 1相互作用,是HSV-1抵抗自噬的重要蛋白包含GADD34同源域,GADD34结构域在HSV-1感染过程中与PP1α结合,使eIF2α去磷酸与Beclin 1结合可抑制病毒诱导的神经元自噬[31]。Us11是HSV-1的晚期基因产物,Us11的异位表达导致自噬的阻断,其特征在于自噬体和自噬溶酶体的数量显著减少。在自噬的早期阶段的这种抑制类似于HSV-1的抗自噬蛋白ICP34.5的抑制作用[32]。在核糖体上US11与PKR的相互作用是RNA依赖性的,并且US11蛋白与eIF-2α具有同源性的底物结构域,在病毒感染过程中Us11通过直接抑制PKR阻止eIF-2α的磷酸化[33]。3 肠道病毒性脑炎脑干脑炎是肠道病毒EV71型(entervirus-71,EV-71)感染CNS的主要特征[34],之前有案例显示儿童感染EV71型病毒后,出现CNS细胞因子风暴[35]。EV71脑干脑炎(brain stem encephalitis,BE)按照疾病严重程度分为三个重要的关键阶段,包括不复杂的BE自主神经系统(autonomic nervous system,ANS)失调和肺水肿(pulmonary edema,PE)[36]。在EV71型中发现了几种可以作为细胞表面受体的分子,如清道夫受体B2(scavenger receptor B2,SCARB2),P-选择素糖蛋白配体1(P-selection glycoprotein ligand 1,PSGL-1),膜联蛋白Ⅱ(annex-in Ⅱ,Anx2),唾液酸化聚糖和硫酸乙酰肝素[37-38]。SCARB2在病毒附着,进入和脱壳中起关键作用,并且它可以有效促进EV71感染[38]。PSGL-1、Anx2、唾液酸化聚糖和硫酸乙酰肝素是附着受体,增强病毒感染[39]。先天性和适应性免疫机制对宿主防御病毒感染都很重要。先天免疫系统通过抗原呈递以及促炎细胞因子的分泌激活适应性免疫,提供抵抗病毒的第一道防线。越来越多的证据表明,促炎和抗炎细胞因子可能在EV71 BE中起重要作用[36],EV71病毒与PSGL-1在淋巴细胞上的相互作用可能诱导BE或PE中涉及的炎性细胞因子的产生[40]。有研究表明,Ⅰ型干扰素(type Ⅰ interferon,IFN-Ⅰ)在控制EV71感染和复制中起重要作用,是控制感染的必要先天防御机制[41]。4 虫媒病毒虫媒病毒是一大组主要存在于自然界的病毒,通过吸血的节肢动物叮咬在易感的脊椎动物宿主而传播。其中,常可造成人类病毒性脑炎的是日本脑炎病毒、西尼罗病毒和登革热病毒。日本脑炎病毒是一种黄病毒,病毒至少有四种基因型,广泛传播于南亚、东南亚和环亚太地区的大多数国家[42]。每年大约发生7万例乙脑病例,这些病例中约有50%发生在中国(台湾除外),有严重的神经和精神后遗症[43-44]。日本脑炎(Japanese encephalitis,JE)是由JEV感染引起的急性人畜共患蚊虫传染病[44],在病理学上,BBB通透性的增强与JEV感染的临床严重性相关,JEV进入CNS并在神经元中传播,造成BBB的破坏,导致人类急性病毒性脑炎[26,44-46],LI等[44]研究证明JEV病毒在BBB破坏之前进入CNS,神经元是CNS中JEV感染的主要靶标,并且星形胶质细胞和小胶质细胞(或浸润性巨噬细胞)的活化可能进一步促成神经元损伤。JEV感染诱导的炎性细胞因子和趋化因子抑制紧密连接(tight junction,TJ)蛋白的表达并最终导致BBB通透性的增强。实验数据显示炎症介质,特别是干扰素-γ(interferon-γ, INF-γ)通过下调TJ蛋白表达,在增强JEV感染中的BBB通透性中发挥核心作用,表明IFN-γ可能是潜在的治疗靶点。在CHEN等[46]研究中通过激活邻近的周细胞,发现在JEV感染过程中破坏内皮屏障完整性的潜在机制。JEV感染选择性地触发IL-6的周细胞诱导促炎反应,IL-6信号传导激活的同时,内皮细胞上调泛素连接酶E3成分N-识别蛋白1(ubiquitin-protein ligase E3 component N-recognin-1,Ubr1)的表达,Ubr1是一种关键的上游调节因子,其引起IL-6信号传导下游的紧密连接蛋白(zonula occludens-1,ZO-1)的蛋白酶体降解并导致内皮屏障完整性的破坏。研究表明,周细胞可能是JEV感染的目标,是内皮屏障完整性受损的机制之一。但是JEV进入CNS的确切途径仍不清楚,根据感染后大脑弥漫性变化,有可能是经过血源途径[47]。之前所报道的研究中指出,JEV可以通过内皮细胞转胞吞和(或)内皮感染的方式穿过BBB[48]。病毒进入是感染过程的第一步,其涉及病毒与其靶细胞之间的多个高度协调的相互作用,参与JEV进入的病毒因子特别是病毒糖蛋白E,其参与附着,内吞和膜融合[49]。LI等[50]指出,NS1蛋白是病毒复制过程中分泌的糖蛋白,在病毒生命周期和发病机制中起多重作用。NS1蛋白有效刺激Th1细胞增殖和IFN-γ产生。抗NS1抗体参与针对JEV感染的免疫保护,表明抗NS1抗体在抗病毒免疫中起重要作用。这为日本脑炎的治疗提供了新思路。5 展望综上,近十几年来,分子病毒学的研究得到迅速发展,在研究过程中发现了很多病毒性脑炎新的发病机制,这些研究成果最终将用于临床治疗。但依然有很多问题尚未解决,如在亚洲地区比较高发的甲型流感病毒易发生变异,不断变异的流感病毒对目前的流感疫苗和抗病毒药物的有效性发出了新的挑战。因此,需要进一步研究甲型流感病毒的发病机制和宿主免疫应答的分子机制,以研发更有效的流感防治方法。6 参考文献[1] SILVA M T.Viral encephalitis[J].Arq Neuropsiquiatr,2013,71(9b):703-709.[2] HANDIQUE S K.Viral infections of the central nervous system[J].Neuroimaging Clin N Am,2011,21(4):777-794.[3] KONG X,ZHANG L,LIU K,et al.Epidemiological features of viral encephalitis in Cangzhou of China with use of multiplex RT-PCR for five RNA viruses[J].J Virol Methods,2015,222:178-181.[4] AI J,XIE Z,LIU G,et al.Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children:a multicentre prospective study[J].BMC Infect Dis,2017,17(1):494.[5] SHAO W,LI X,GORAYA M U,et al.Evolution of Influenza A Virus by Mutation and Re-Assortment[J].Int J Mol Sci,2017,18(8).pii:E1650.DOI:10.3390/ijms.[6] YE C,ZHU W,YU J,et al.Understanding the complex seasonality of seasonal influenza A and B virus transmission:Evidence from six years of surveillance data in Shanghai,China[J].Int J Infect Dis,2019,81:57-65.[7] WANG X,JIANG H,WU P,et al.Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China,2013-17:an epidemiological study of laboratory-confirmed case series[J].Lancet Infect Dis,2017,17(8):822-832.[8] LEE N,WONG C K,CHAN P K S,et al.Acute Encephalopathy Associated with Influenza A Infection in Adults[J].Emerg Infect Dis,2010,16(1):139-142.[9] JANG H,BOLTZ D,STURM-RAMIREZ K,et al.Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration[J].Proc Natl Acad Sci U S A,2009,106(33):14 063-14 068.[10] JANG H,BOLTZ D,MCCLAREN J,et al.Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice[J].J Neurosci,2012,32(5):1 545-1 559.[11] SADASIVAN S,ZANIN M,O'BRIEN K,et al.Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus[J].PLoS One,2015,10(4):e0.[12] WANG G,ZHANG J,LI W,et al.Apoptosis and proinflammatory cytokine responses of primary mouse microglia and astrocytes induced by human H1N1 and avian H5N1 influenza viruses[J].Cell Mol Immunol,2008,5(2):113-120.[13] IWASAKI T,ITAMURA S,NISHIMURA H,et al.Productive infection in the murine central nervous system with avian influenza virus A (H5N1) after intranasal inoculation[J].Acta Neuropathol,2004,108(6):485-492.[14] VAN RIEL D,VERDIJK R,KUIKEN T.The olfactory nerve:a shortcut for influenza and other viral diseases into the central nervous system[J].J Pathol,2015,235(2):277-287.[15] VAN RIEL D,LEIJTEN L M,VERDIJK R M,et al.Evidence for influenza virus CNS invasion along the olfactory route in an immunocompromised infant[J].J Infect Dis,2014,210(3):419-423.[16] SCHRAUWEN E J,HERFST S,LEIJTEN L M,et al.The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets[J].J Virol,2012,86(7):3 975-3 984.[17] YAMADA M,BINGHAM J,PAYNE J,et al.Multiple routes of invasion of wild-type Clade 1 highly pathogenic avian influenza H5N1 virus into the central nervous system (CNS) after intranasal exposure in ferrets[J].Acta Neuropathol,2012,124(4):505-516.[18] HUANG Q,SIVARAMAKRISHNA R P,LUDWIG K,et al.Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2003,1614(1):3-13.[19] CHU V C,WHITTAKER G R.Influenza virus entry and infection require host cell N-linked glycoprotein[J].Proc Natl Acad Sci U S A,2004,101(52):18 153-18 158.[20] KIDO H,OKUMURA Y,TAKAHASHI E,et al.Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses[J].J Mol Genet Med,2008,3(1):167-175.[21] LE T Q,KAWACHI M,YAMADA H,et al.Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain[J].Biol Chem,2006,387(4):467-475.[22] MEDZHITOV R,PRESTON-HURLBURT P,JANEWAY C A,et al.A human homologue of the Drosophi-la Toll protein signals activation of adaptive immunity[J].Nature,1997,388(6 640):394-397.[23] HIDAKA F,MATSUO S,MUTA T,et al.A missense mutation of the Toll-like receptor 3 gene in a patient with influenza-associated encephalopathy[J].Clin Immunol,2006,119(2):188-194.[24] MORI I,GOSHIMA F,KOSHIZUKA T,et al.Differential activation of the c-Jun N-terminal kinase/stress-activated protein kinase and p38 mitogen-activated protein kinase signal transduction pathways in the mouse brain upon infection with neurovirulent influenza A virus[J].J Gen Virol,2003,84(Pt 9):2 401-2 408.[25] EHRHARDT C,WOLFF T,PLESCHKA S,et al.Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses[J].J Virol,2007,81(7):3 058-3 067.[26] DIAGANA M,PREUX P M,DUMAS M.Japanese encephalitis revisited[J].J Neurol Sci,2007,262(1/2):165-170.[27] AHMED M,LOCK M,MILLER C G,et al.Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo[J].J Virol,2002,76(2):717-729.[28] MANCINI M,VIDAL S M.Insights into the pathogenesis of herpes simplex encephalitis from mouse models[J].Mamm Genome,2018,29(7/8):425-445.[29] TALLOCZY Z,JIANG W,VIRGIN H W T,et al.Regulation of starvation-and virus-induced autophagy by the eIF2alpha kinase signaling pathway[J].Proc Natl Acad Sci U S A,2002,99(1):190-195.[30] HE B,GROSS M,ROIZMAN B.The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase[J].Proc Natl Acad Sci U S A,1997,94(3):843-848.[31] ORVEDAHL A,ALEXANDER D,TALLOCZY Z,et al.HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein[J].Cell Host Microbe,2007,1(1):23-35.[32] LUSSIGNOL M,QUEVAL C,BERNET-CAMARD M F,et al.The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR[J].J Virol,2013,87(2):859-871.[33] CASSADY K A,GROSS M.The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain[J].J Virol,2002,76(5):2 029-2 035.[34] WANG S M,LIU C C,TSENG H W,et al.Clinical spectrum of enterovirus 71 infection in children in southern Taiwan,with an emphasis on neurological complications[J].Clin Infect Dis,1999,29(1):184-190.[35] LIN T Y,HSIA S H,HUANG Y C,et al.Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system[J].Clin Infect Dis,2003,36(3):269-274.[36] WANG S M,LEI H Y,LIU C C.Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis[J].Clin Dev Immunol,2012,2012:.[37] LEE K Y.Enterovirus 71 infection and neurological complications[J].Korean J Pediatr,2016,59(10):395-401.[38] YAMAYOSHI S,YAMASHITA Y,LI J,et al.Scavenger receptor B2 is a cellular receptor for enterovirus 71[J].Nat Med,2009,15(7):798-801.[39] YAMAYOSHI S,FUJII K,KOIKE S.Receptors for enterovirus 71[J].Emerg Microbes Infect,2014,3(7):e53.[40] PATEL K P,BERGELSON J M.Receptors identified for hand,foot and mouth virus[J].Nat Med,2009,15(7):728-739.[41] LIU M L,LEE Y P,WANG Y F,et al.Type I interferons protect mice against enterovirus 71 infection[J].J Gen Virol,2005,86(Pt 12):3 263-3 269.[42] SOLOMON T.Control of Japanese encephalitis--within our grasp?[J].N Engl J Med,2006,355(9):869-871.[43] CAMPBELL G L,HILLS S L,FISCHER M,et al.Estimated global incidence of Japanese encephalitis:a systematic review[J].Bull World Health Organ,2011,89(10):766-774,774a-774e.[44] LI F,WANG Y,YU L,et al.Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection[J].J Virol,2015,89(10):5 602-5 614.[45] YANG S,PEI Y,LI X,et al.miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2[J].Virol J,2016,13:105.[46] CHEN C J,OU Y C,LI J R,et al.Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier[J].J Virol,2014,88(2):1 150-1 161.[47] MISRA U K,KALITA J.Overview:Japanese encephalitis[J].Prog Neurobiol,2010,91(2):108-120.[48] GERMAN A C,MYINT K S,MAI N T,et al.A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model[J].Trans R Soc Trop Med Hyg,2006,100(12):1 135-1 145.[49] YUN S I,LEE Y M.Early Events in Japanese Encephalitis Virus Infection:Viral Entry[J].Pathogens,2018,7(3).pii:E68.DOI:10.3390/pathogens.[50] LI Y,COUNOR D,LU P,et al.Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model[J].Virol J,2012,9:135.

文章来源:《人类学学报》 网址: http://www.rlxxb.cn/qikandaodu/2021/0317/608.html



上一篇:人类抗疫史的回顾与反思
下一篇:所有的知都知识都不会白学

人类学学报投稿 | 人类学学报编辑部| 人类学学报版面费 | 人类学学报论文发表 | 人类学学报最新目录
Copyright © 2018 《人类学学报》杂志社 版权所有
投稿电话: 投稿邮箱: